A representation theorem for independence algebras

K. Urbanik

(Urbanik)

January 8, 2014 1 / 25

A **constant** in an algebra A is the image of a basic nullary operation.

A **constant** in an algebra *A* is the image of a basic nullary operation. An **algebraic constant** is the image of a nullary term operation.

Let $\langle A, \mathbf{A} \rangle$ be an **algebra**, where *A* is a non-empty set, and **A** is the collection of all term operations of *A*. A **constant** in an algebra *A* is the image of a basic nullary operation. An **algebraic constant** is the image of a nullary term operation. **Note** $\langle \emptyset \rangle = \emptyset$ if and only if *A* has no algebraic constants; if and only if *A* has no constants.

A **constant** in an algebra *A* is the image of a basic nullary operation. An **algebraic constant** is the image of a nullary term operation. **Note** $\langle \emptyset \rangle = \emptyset$ if and only if *A* has no algebraic constants; if and only if *A* has no constants.

We say that $\langle A, \mathbf{A} \rangle$ satisfies the **exchange property** (EP), if for every subset X of A and all elements $x, y \in A$ if

 $y \in \langle X \cup \{x\}
angle$ and $y
ot \in \langle X
angle$

then $x \in \langle X \cup \{y\} \rangle$.

We say that a subset X of A is a **basis** of A if X generates A and is independent.

We say that a subset X of A is a **basis** of A if X generates A and is independent.

Note

(i) Any algebra satisfying the exchange property (EP) has a basis.

We say that a subset X of A is a **basis** of A if X generates A and is independent.

Note

(i) Any algebra satisfying the exchange property (EP) has a basis.
(ii) A subset X is a basis if and only if X is a minimal generating set if and only if X is the maximal independent set.

We say that a subset X of A is a **basis** of A if X generates A and is independent.

Note

(i) Any algebra satisfying the exchange property (EP) has a basis.
(ii) A subset X is a basis if and only if X is a minimal generating set if and only if X is the maximal independent set.

(iii) All of bases of A has the same cardinality, called the **dimension** of A.

Independence algebras, also known as v^* -algebras

We say that a mapping θ from A into itself is an **endomorphism** if for any *n*-ary term operation $t(x_1, \dots, x_n)$ we have

$$t(x_1,\cdots,x_n)\theta = t(x_1\theta,\cdots,x_n\theta).$$

We say that a mapping θ from A into itself is an **endomorphism** if for any *n*-ary term operation $t(x_1, \dots, x_n)$ we have

$$t(x_1,\cdots,x_n)\theta = t(x_1\theta,\cdots,x_n\theta).$$

An algebra $\langle A, \mathbf{A} \rangle$ satisfying the exchange property is called an **independence algebra** if it satisfies the **free basis property**, by which we mean that for any basis X of A and a map $\alpha : X \longrightarrow A$, α can be extended to an endomorphism of A.

We say that a mapping θ from A into itself is an **endomorphism** if for any *n*-ary term operation $t(x_1, \dots, x_n)$ we have

$$t(x_1,\cdots,x_n)\theta = t(x_1\theta,\cdots,x_n\theta).$$

An algebra $\langle A, \mathbf{A} \rangle$ satisfying the exchange property is called an **independence algebra** if it satisfies the **free basis property**, by which we mean that for any basis X of A and a map $\alpha : X \longrightarrow A$, α can be extended to an endomorphism of A. For any independence algebra A, we have

$$\langle \emptyset \rangle = C$$

where C is the collection of all elements $u \in A$ such that there is a constant term operation $t(x_1, \dots, x_n)$ of A whose image is u.

We say that an equality

$$f(x_1,\cdots,x_n)=g(x_1,\cdots,x_n)$$

depends on x_j $(1 \le j \le n)$, if there exists a system a_1, \dots, a_n, a'_j of elements belonging to A for which

$$f(a_1, \cdots, a_{j-1}, a_j, a_{j+1}, \cdots, a_n) = g(a_1, \cdots, a_{j-1}, a_j, a_{j+1}, \cdots, a_n)$$

and

1

$$f(a_1,\cdots,a_{j-1},a_j',a_{j+1},\cdots,a_n) \neq g(a_1,\cdots,a_{j-1},a_j',a_{j+1},\cdots,a_n).$$

An algebra $\langle A, \mathbf{A} \rangle$ is called a *v*-algebra if for every pair of integers $j, n \ (1 \le j \le n)$ and for every pair of *n*-ary term operations for which the equality

$$f(x_1,\cdots,x_n)=g(x_1,\cdots,x_n)$$

depends on x_j $(1 \le j \le n)$, there exists a (n-1)-ary term operation h such that the above equality is equivalent to the equality

$$x_j = h(x_1, \cdots, x_{j-1}, x_{j+1}, \cdots, x_n).$$

An algebra $\langle A, \mathbf{A} \rangle$ is called a *v*-algebra if for every pair of integers $j, n \ (1 \le j \le n)$ and for every pair of *n*-ary term operations for which the equality

$$f(x_1,\cdots,x_n)=g(x_1,\cdots,x_n)$$

depends on x_j $(1 \le j \le n)$, there exists a (n-1)-ary term operation h such that the above equality is equivalent to the equality

$$x_j = h(x_1, \cdots, x_{j-1}, x_{j+1}, \cdots, x_n).$$

Note v-algebras are included in v^* -algebras.

Note If transformations belonging to \mathcal{G} have no fixed point, then the empty set is normal with respect to \mathcal{G} .

Note If transformations belonging to \mathcal{G} have no fixed point, then the empty set is normal with respect to \mathcal{G} .

Notations

 $\mathbf{A}^{(0)}$: the class of all values of constant term operations of A.

Note If transformations belonging to \mathcal{G} have no fixed point, then the empty set is normal with respect to \mathcal{G} .

Notations

 $\mathbf{A}^{(0)}$: the class of all values of constant term operations of A.

 $\mathbf{A}^{(n)}$: the class of all *n*-ary term operations of *A*, where $n \ge 1$.

Note If transformations belonging to \mathcal{G} have no fixed point, then the empty set is normal with respect to \mathcal{G} .

Notations

 $\mathbf{A}^{(0)}$: the class of all values of constant term operations of A.

 $\mathbf{A}^{(n)}$: the class of all *n*-ary term operations of *A*, where $n \ge 1$.

 $\mathbf{A}^{(n,k)}$: the subclass of $\mathbf{A}^{(n)}$ containing all *n*-ary term operations depending on at most *k* variables. i.e. $f \in \mathbf{A}^{(n,k)}$ if there is some $g \in \mathbf{A}^{(k)}$ such that

$$f(x_1,\cdots,x_n)=g(x_{i_1},\cdots,x_{x_{i_k}})$$

for a system of indices i_1, \dots, i_k and for every $x_1, \dots, x_n \in A$.

$$\hat{f}(x) = f(x, \cdots, x),$$

where $f \in \mathbf{A}$.

$$\hat{f}(x) = f(x, \cdots, x),$$

where $f \in A$. $\widetilde{A}^{(n)}$: the subclass of $A^{(n)}$ containing all *n*-ary term operations *f* for which

$$\hat{f}(x) = x.$$

$$\hat{f}(x) = f(x, \cdots, x),$$

where $f \in \mathbf{A}$. $\widetilde{\mathbf{A}}^{(n)}$: the subclass of $\mathbf{A}^{(n)}$ containing all *n*-ary term operations *f* for which

$$f(x) = x.$$

 $\widetilde{\mathbf{A}}^{(n,k)}$: the intersection $\widetilde{\mathbf{A}}^{(n)} \cap \mathbf{A}^{(n,k)}$.

$$\hat{f}(x) = f(x, \cdots, x),$$

where $f \in \mathbf{A}$. $\widetilde{\mathbf{A}}^{(n)}$: the subclass of $\mathbf{A}^{(n)}$ containing all *n*-ary term operations *f* for which

$$f(x) = x.$$

 $\widetilde{\mathbf{A}}^{(n,k)}$: the intersection $\widetilde{\mathbf{A}}^{(n)} \cap \mathbf{A}^{(n,k)}$.

Representation theorem

Let $\langle A, \mathbf{A} \rangle$ be a *v*-algebra. Then one of the following holds: (i) If $\mathbf{A}^{(0)} \neq \emptyset$ and $\mathbf{A}^{(3)} \neq \mathbf{A}^{(3,1)}$, then there is a field \mathcal{K} such that A is a linear space over \mathcal{K} and, further, there exists a linear subspace A_0 of A such that \mathbf{A} is the class of all term operations f defined as

$$f(x_1,\cdots,x_n)=\sum_{k=1}^n\lambda_kx_k+a,$$

where $\lambda_1, \cdots, \lambda_k \in \mathcal{K}$ and $a \in A_0$.

Representation theorem

Let $\langle A, \mathbf{A} \rangle$ be a *v*-algebra. Then one of the following holds: (i) If $\mathbf{A}^{(0)} \neq \emptyset$ and $\mathbf{A}^{(3)} \neq \mathbf{A}^{(3,1)}$, then there is a field \mathcal{K} such that A is a linear space over \mathcal{K} and, further, there exists a linear subspace A_0 of A such that \mathbf{A} is the class of all term operations f defined as

$$f(x_1,\cdots,x_n)=\sum_{k=1}^n\lambda_kx_k+a,$$

where $\lambda_1, \cdots, \lambda_k \in \mathcal{K}$ and $a \in A_0$.

(ii) If $\mathbf{A}^0 = \emptyset$ and $\mathbf{A}^{(3)} \neq \mathbf{A}^{(3,1)}$, then there is a field \mathcal{K} such that A is a linear space over \mathcal{K} and further, there exits a linear subspace A_0 of A such that \mathbf{A} is the class of all term operations f defined as

$$f(x_1,\cdots,x_n)=\sum_{k=1}^n\lambda_kx_k+a,$$

where $\lambda_1, \cdots, \lambda_k \in \mathcal{K}, \sum_{k=1}^n \lambda_k = 1$ and $a \in A_0$.

(iii) If $\mathbf{A}^{(3)} = \mathbf{A}^{(3,1)}$, then there is a group \mathcal{G} of transformations of the set A such that every transformation that is not the identity has at most one fixed point in A. Moreover, there is a subset $A_0 \subseteq A$ normal with respect to the group \mathcal{G} such that \mathbf{A} is the class of all term operations f defined as

$$f(x_1,\cdots,x_n)=g(x_j) \ (1\leq j\leq n),$$

or

$$f(x_1,\cdots,x_n)=a,$$

where $g \in \mathcal{G}$ and $a \in A_0$. Note In case (iii), we have $\mathbf{A}^{(n)} = \mathbf{A}^{(n,1)}$. Let $\langle A, \mathbf{A} \rangle$ be a v^* -algebra with dimension at least three. Then one of the following cases holds.

(i) $\langle A, \mathbf{A} \rangle$ is a *v*-algebra.

(ii) There exist a permutation group \mathcal{G} of the set A and a subset A_0 of A normal with respect to \mathcal{G} such that **A** is the class of all term operations f defined as

$$f(x_1,\cdots,x_n)=g(x_j) \ (1\leq j\leq n),$$

or

$$f(x_1,\cdots,x_n)=a,$$

where $g \in \mathcal{G}$ and $a \in A_0$. Note In the above case (ii), $\mathbf{A}^{(n)} = \mathbf{A}^{(n,1)}$. **Fact 1**: If $\mathbf{A}^{(n)} \neq \mathbf{A}^{(n,1)}$ for any $n \ge 3$, then $\widetilde{\mathbf{A}}^{(n)} \neq \widetilde{\mathbf{A}}^{(n,1)}$.

Image: A matrix of the second seco

3

$$s(x_1, x_2, x_1) = s(x_2, x_1, x_1) = x_2$$

for each $x_1, x_2 \in A$.

$$s(x_1, x_2, x_1) = s(x_2, x_1, x_1) = x_2$$

for each $x_1, x_2 \in A$. **Fact 2**: If *s* is a quasi-symmetric term operation, then for all $x_1, x_2, x_3, x_4 \in A$ the following equalities are true: (i) $s(x_1, x_2, x_3) = s(x_2, x_1, x_3)$.

$$s(x_1, x_2, x_1) = s(x_2, x_1, x_1) = x_2$$

for each $x_1, x_2 \in A$. **Fact 2**: If *s* is a quasi-symmetric term operation, then for all $x_1, x_2, x_3, x_4 \in A$ the following equalities are true: (i) $s(x_1, x_2, x_3) = s(x_2, x_1, x_3)$. (ii) $s(s(x_1, x_2, x_3), x_4, x_3) = s(x_1, s(x_2, x_4, x_3), x_3)$.

$$s(x_1, x_2, x_1) = s(x_2, x_1, x_1) = x_2$$

for each $x_1, x_2 \in A$. **Fact 2**: If *s* is a quasi-symmetric term operation, then for all $x_1, x_2, x_3, x_4 \in A$ the following equalities are true: (i) $s(x_1, x_2, x_3) = s(x_2, x_1, x_3)$. (ii) $s(s(x_1, x_2, x_3), x_4, x_3) = s(x_1, s(x_2, x_4, x_3), x_3)$. (iii) $f(s(x_1, x_2, x_3), x_3) = s(f(x_1, x_3), f(x_2, x_3), x_3)$ for any $f \in \widetilde{\mathbf{A}}^{(2)}$.

$$s(x_1, x_2, x_1) = s(x_2, x_1, x_1) = x_2$$

for each $x_1, x_2 \in A$. **Fact 2**: If *s* is a quasi-symmetric term operation, then for all $x_1, x_2, x_3, x_4 \in A$ the following equalities are true: (i) $s(x_1, x_2, x_3) = s(x_2, x_1, x_3)$. (ii) $s(s(x_1, x_2, x_3), x_4, x_3) = s(x_1, s(x_2, x_4, x_3), x_3)$. (iii) $f(s(x_1, x_2, x_3), x_4, x_3) = s(f(x_1, x_3), f(x_2, x_3), x_3)$ for any $f \in \widetilde{A}^{(2)}$. (iv) $f(x_1, x_2, x_3) = s(f(x_1, x_1, x_3), f(x_1, x_2, x_1), x_1)$ for any $f \in \widetilde{A}^{(3)}$.

(Urbanik)

Fact 3: If $A^{(3)} \neq A^{(3,1)}$, then there is a quasi-symmetric term operation.

Fact 3: If $\mathbf{A}^{(3)} \neq \mathbf{A}^{(3,1)}$, then there is a quasi-symmetric term operation. Let \mathcal{K} be the class $\widetilde{\mathbf{A}}^{(2)}$. Elements of \mathcal{K} will be denoted by small Greek letters: $\lambda, \mu, \nu, \cdots$. Then we have

Fact 3: If $\mathbf{A}^{(3)} \neq \mathbf{A}^{(3,1)}$, then there is a quasi-symmetric term operation. Let \mathcal{K} be the class $\widetilde{\mathbf{A}}^{(2)}$. Elements of \mathcal{K} will be denoted by small Greek letters: $\lambda, \mu, \nu, \cdots$. Then we have Fact 4: If $\mathbf{A}^{(3)} \neq \mathbf{A}^{(3,1)}$, then \mathcal{K} is a field with respect to the operations:

$$(\lambda + \mu)(x_1, x_2) = s(\lambda(x_1, x_2), \mu(x_1, x_2), x_2),$$

$$(\lambda \cdot \mu)(x_1, x_2) = \lambda(\mu(x_1, x_2), x_2),$$

where s is a quasi-symmetric term operation.

Fact 3: If $\mathbf{A}^{(3)} \neq \mathbf{A}^{(3,1)}$, then there is a quasi-symmetric term operation. Let \mathcal{K} be the class $\widetilde{\mathbf{A}}^{(2)}$. Elements of \mathcal{K} will be denoted by small Greek letters: $\lambda, \mu, \nu, \cdots$. Then we have **Fact 4**: If $\mathbf{A}^{(3)} \neq \mathbf{A}^{(3,1)}$, then \mathcal{K} is a field with respect to the operations:

$$(\lambda + \mu)(x_1, x_2) = s(\lambda(x_1, x_2), \mu(x_1, x_2), x_2),$$

$$(\lambda \cdot \mu)(x_1, x_2) = \lambda(\mu(x_1, x_2), x_2),$$

where *s* is a quasi-symmetric term operation.

Note: The zero element and the unit element of ${\cal K}$ are defined by

$$0(x_1, x_2) = x_2, \ 1(x_1, x_2) = x_1.$$

Fact 5: If $\mathbf{A}^{(3)} \neq \mathbf{A}^{(3,1)}$, then A is a linear space over \mathcal{K} with respect to the operations:

$$x + y = s(x, y, \theta) \quad (x, y \in A)$$

$$\lambda \cdot x = \lambda(x, \theta) \quad (\lambda \in \mathcal{K}, x \in A),$$

where θ is an element of $\mathbf{A}^{(0)}$ if $\mathbf{A}^{(0)} \neq \emptyset$ and is an element of A if $\mathbf{A}^{(0)} = \emptyset$.

Fact 6: If $\mathbf{A}^{(3)} \neq \mathbf{A}^{(3,1)}$, then all term operation f defined as

$$f(x_1,\cdots,x_n)=\sum_{k=1}^n\lambda_kx_k,$$

where $\lambda_1, \dots, \lambda_n \in \mathcal{K}$ and $\sum_{k=1}^n \lambda_k = 1$, belong to $\widetilde{\mathbf{A}}^{(n)}$ $(n = 1, 2, \dots)$.

Fact 6: If $\mathbf{A}^{(3)} \neq \mathbf{A}^{(3,1)}$, then all term operation f defined as

$$f(x_1,\cdots,x_n)=\sum_{k=1}^n\lambda_kx_k,$$

where $\lambda_1, \dots, \lambda_n \in \mathcal{K}$ and $\sum_{k=1}^n \lambda_k = 1$, belong to $\widetilde{\mathbf{A}}^{(n)}$ $(n = 1, 2, \dots)$. Fact 7: If $\mathbf{A}^{(3)} \neq \mathbf{A}^{(3,1)}$, then all term operation f belonging to $\widetilde{\mathbf{A}}^{(n)}$ $(n = 1, 2, \dots)$ are of the form

$$f(x_1,\cdots,x_n)=\sum_{k=1}^n\lambda_kx_k,$$

where $\lambda_1, \dots, \lambda_n \in \mathcal{K}$ and $\sum_{k=1}^n \lambda_k = 1$.

Fact 8: If $\mathbf{A}^{(3)} \neq \mathbf{A}^{(3,1)}$, then the set

$$A_0 = \{f(heta): f \in \mathbf{A}^{(1)}\}$$

is a linear subspace of A. Moreover, for every $f \in \mathbf{A}^{(1)}$ there is an element $\lambda \in \mathcal{K}$ such that

$$f(x) = \lambda x + f(\theta)$$

for any $x \in A$.

Fact 8: If $\mathbf{A}^{(3)} \neq \mathbf{A}^{(3,1)}$, then the set

$$A_0 = \{f(heta): f \in \mathbf{A}^{(1)}\}$$

is a linear subspace of A. Moreover, for every $f \in \mathbf{A}^{(1)}$ there is an element $\lambda \in \mathcal{K}$ such that

$$f(x) = \lambda x + f(\theta)$$

for any $x \in A$. **Fact 9**: If $A^{(3)} = A^{(3,1)}$, then $A^{(n)} = A^{(n,1)}$ for every $n \ge 1$.

Proof of the Representation Theorem of *v*-algebras:

Proof of the Representation Theorem of *v***-algebras:**

(i) If $\mathbf{A}^{(0)} \neq \emptyset$ and $\mathbf{A}^{(3,1)} \neq \mathbf{A}^{(3)}$, then by Fact 4 and Fact 5, there is field \mathcal{K} such that A is a linear space over \mathcal{K} . Taking into account of the definition of addition and scalar-multiplication in A and the definition of θ , we infer that all term operations defined as

$$f(x_1,\cdots,x_n)=\sum_{k=1}^n\lambda_kx_k+a,$$

where $\lambda_1, \cdots, \lambda_n \in \mathcal{K}$ and $a \in A_0$, belong to **A**.

Now, let $f \in \mathbf{A}$. By **Fact 8**, we have the equality

$$\hat{f}(x) = \lambda x + a$$

where $\lambda \in \mathcal{K}$ and $a = f(\theta) \in A_0$. Put

$$g(x_1,\cdots,x_n)=f(x_1,\cdots,x_n)-\lambda x_n-a+x_n.$$

Obviously, $\hat{g}(x) = x$, so that $g \in \widetilde{A}^{(n)}$. Using **Fact 7**, we have the equality

$$g(x_1,\cdots,x_n)=\sum_{k=1}^n\mu_kx_k,$$

where $\mu_1, \cdots, \mu_k \in \mathcal{K}$, and hence we get the representation

$$f(x_1,\cdots,x_n)=\sum_{k=1}^n\lambda_kx_k+a.$$

(ii) If $\mathbf{A}^{(0)} = \emptyset$ and $\mathbf{A}^{(3,1)} \neq \mathbf{A}^{(3)}$, then by Fact 4 and Fact 5, there is a field \mathcal{K} such that A is a linear space over \mathcal{K} .

(ii) If $\mathbf{A}^{(0)} = \emptyset$ and $\mathbf{A}^{(3,1)} \neq \mathbf{A}^{(3)}$, then by Fact 4 and Fact 5, there is a field \mathcal{K} such that A is a linear space over \mathcal{K} .

First, it is proved that for all functions f belonging to **A** are of the form

$$f(x_1,\cdots,x_n)=g(f_0(x_1,\cdots,x_n))$$

where $g \in \mathbf{A}^{(1)}$ and $f_0 \in \widetilde{\mathbf{A}}^{(n)}$.

As $g \in \mathbf{A}^{(1)}$. We have, by **Fact 8**,

$$g(x) = \lambda x + g(\theta).$$

We can show that $\lambda = 1$, so that

$$g(x)=x+g(\theta).$$

As $g \in \mathbf{A}^{(1)}$. We have, by **Fact 8**,

$$g(x) = \lambda x + g(\theta).$$

We can show that $\lambda = 1$, so that

$$g(x)=x+g(\theta).$$

Hence

$$f(x_1,\cdots,x_n)=f_0(x_1,\cdots,x_n)+a$$

where $a \in A_0$. Since $f_0 \in \widetilde{\mathbf{A}}^{(n)}$, we have, by **Fact 7**, that

$$f(x_1,\cdots,x_n)=\sum_{k=1}^n\lambda_kx_k+a$$

where $\lambda_1, \cdots, \lambda_n \in \mathcal{K}$ and $\sum_{k=1}^n \lambda_k = 1$.

(iii) If $\mathbf{A}^{(3)} = \mathbf{A}^{(3,1)}$, then by Fact 9 A is the class of all term operations f:

$$f(x_1,\cdots,x_n)=h(x_j),$$

where $h \in \mathbf{A}^{(1)}, 1 \leq j \leq n$.

(iii) If $A^{(3)} = A^{(3,1)}$, then by Fact 9 A is the class of all term operations f:

$$f(x_1,\cdots,x_n)=h(x_j),$$

where $h \in A^{(1)}, 1 \le j \le n$.

First let us assume that $\mathbf{A}^{(1)} = \mathbf{A}^{(1,0)}$. This implies that A is the one-point set: $A = \{a_0\}$ and, consequently,

$$f(x_1,\cdots,x_n)=a_0$$

for every $f \in \mathbf{A}$.

(iii) If $A^{(3)} = A^{(3,1)}$, then by Fact 9 A is the class of all term operations f:

$$f(x_1,\cdots,x_n)=h(x_j),$$

where $h \in A^{(1)}, 1 \le j \le n$.

First let us assume that $\mathbf{A}^{(1)} = \mathbf{A}^{(1,0)}$. This implies that A is the one-point set: $A = \{a_0\}$ and, consequently,

$$f(x_1,\cdots,x_n)=a_0$$

for every $f \in \mathbf{A}$. Let \mathcal{G} be the group containing the identity transformation only and $A_0 = \emptyset$. Obviously, A_0 is normal with respect to \mathcal{G} .

If
$$\mathbf{A}^{(1)} \neq \mathbf{A}^{(1,0)}$$
. Put

$$\mathcal{G} = \mathbf{A}^{(1)} \setminus \mathbf{A}^{(1,0)}.$$

Then \mathcal{G} is a group with respect to the operation

$$(g_1 \cdot g_2)(x) = g_1(g_2(x)).$$

The set

$$A_0 = \mathbf{A}^{(0)}$$

is normal with respect to $\mathcal{G}.$ Finally, all term operations of $\boldsymbol{\mathsf{A}}$ is of the form

If
$$\mathbf{A}^{(1)} \neq \mathbf{A}^{(1,0)}$$
. Put

$$\mathcal{G} = \mathbf{A}^{(1)} ackslash \mathbf{A}^{(1,0)}.$$

Then \mathcal{G} is a group with respect to the operation

$$(g_1 \cdot g_2)(x) = g_1(g_2(x)).$$

The set

$$A_0 = \mathbf{A}^{(0)}$$

is normal with respect to $\mathcal{G}.$ Finally, all term operations of $\boldsymbol{\mathsf{A}}$ is of the form

$$f(x_1,\cdots,x_n)=g(x_j) \ (1\leq j\leq n)$$

or

$$f(x_1,\cdots,x_n)=a,$$

where $g \in \mathcal{G}$.

Let A be an independence algebra with dimension at least 3. If A has no constants, then one of the following holds:

Let A be an independence algebra with dimension at least 3. If A has no constants, then one of the following holds: (i) $\mathbf{A}^{(n)} = \mathbf{A}^{(n,1)}$, for all $n \ge 1$. Let A be an independence algebra with dimension at least 3. If A has no constants, then one of the following holds:

(i)
$$A^{(n)} = A^{(n,1)}$$
, for all $n \ge 1$.

(ii) A is an affine algebra, namely, there is a field \mathcal{K} such that A is a linear space over \mathcal{K} and further, there exits a linear subspace A_0 of A such that **A** is the class of all term operations f defined as

$$f(x_1,\cdots,x_n)=\sum_{k=1}^n\lambda_kx_k+a,$$

where $\lambda_1, \dots, \lambda_k \in \mathcal{K}, \sum_{k=1}^n \lambda_k = 1$ and $a \in A_0$.

The set H of all unary term operations of A forms a group under the multiplication given as the composition of functions.

The set H of all unary term operations of A forms a group under the multiplication given as the composition of functions.

Let $t(x_1, \dots, x_n)$ be a truly *n*-ary term operation of *A* with $n \ge 3$. Then *A* must be an affine algebra, so that

$$t(x_1,\cdots,x_n)=k_1x_1+\cdots+k_nx_n+a,$$

where $k_1 + \cdots + k_n = 1$ and $a \in A_0$.

The set H of all unary term operations of A forms a group under the multiplication given as the composition of functions.

Let $t(x_1, \dots, x_n)$ be a truly *n*-ary term operation of *A* with $n \ge 3$. Then *A* must be an affine algebra, so that

$$t(x_1,\cdots,x_n)=k_1x_1+\cdots+k_nx_n+a,$$

where $k_1 + \cdots + k_n = 1$ and $a \in A_0$. Let s_2, \cdots, s_{n-1} be unary term operations of A. Then

$$s_2(x) = x + a_2, \cdots, s_{n-1}(x) = x + a_{n-1}$$

where $a_2, \cdots, a_{n-1} \in A_0$.

Independence algebras with no constants

Define a mapping

$$\psi: H \longrightarrow H, u(x) \longmapsto t(x, s_2(x), \cdots, s_{n-1}(x), u(x)).$$

Define a mapping

$$\psi: H \longrightarrow H, u(x) \longmapsto t(x, s_2(x), \cdots, s_{n-1}(x), u(x)).$$

Is ψ onto?

Define a mapping

$$\psi: H \longrightarrow H, u(x) \longmapsto t(x, s_2(x), \cdots, s_{n-1}(x), u(x)).$$

Is ψ onto?

For any unary term operation $v(x) = x + b \in H$ with $b \in A_0$, by putting $s_n(x) = x + a_n$, where

$$a_n = k_n^{-1}(b - k_2a_2 - \dots - k_{n-1}a_{n-1} - a) \in A_0$$

we have

$$t(x,s_2(x),\cdots,s_{n-1}(x),s_n(x))=v(x),$$

and hence ψ is onto.

Define a mapping

$$\psi: H \longrightarrow H, u(x) \longmapsto t(x, s_2(x), \cdots, s_{n-1}(x), u(x)).$$

Is ψ onto?

For any unary term operation $v(x) = x + b \in H$ with $b \in A_0$, by putting $s_n(x) = x + a_n$, where

$$a_n = k_n^{-1}(b - k_2a_2 - \dots - k_{n-1}a_{n-1} - a) \in A_0$$

we have

$$t(x,s_2(x),\cdots,s_{n-1}(x),s_n(x))=v(x),$$

and hence ψ is onto.

Question: Can we show the map ψ is onto without using Urbanik's Representation Theorem??? :-(